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Small-angle scattering data from non-dilute solutions of particles are often

analysed by indirect Fourier transformation using a specific model structure

factor to obtain an estimate of the distance distribution function that is free from

concentration effects. A new approach is suggested here, whereby the

concentration effects are expressed solely through real space functions without

the use of an explicit structure factor. This is done by dividing the total distance

distribution function for the scattering into three different contributions, as

suggested by Kruglov [(2005). J. Appl. Cryst. 38, 716–720]: (i) the single particle

distribution which is due to intraparticle effects, (ii) the excluded volume

distribution from excluded volume effects which is only dependent upon the

geometry of the particles, and (iii) a structure distribution which is due to the

remaining interaction between the particles. Only the single particle distribution

and the structure distribution are allowed to vary freely (within the restrictions

of a smoothness constraint). These two distributions may be separated mainly

because they differ in their regions of support in real space. From the estimated

distributions the structure factor can be calculated. For deviations of particles

from spherical symmetry, the excluded volume distribution may be approxi-

mated by that of an ellipsoid of revolution. Excluded volume distributions have

been calculated for ellipsoids of revolution of axial ratios between 0.1 and 10

and implemented in the program IFTc, which is described in the appendix. The

validity of the approach is demonstrated for globular particles.

1. Introduction

For several decades, small-angle scattering (SAS) has been an

important tool for the investigation of structures (e.g. Glatter

& Kratky, 1982; Feigin & Svergun, 1987). For the application

of the technique to solution scattering it is frequently possible

to assume that the studied system is sufficiently dilute to

neglect interparticle effects, which simplifies the subsequent

analysis significantly. The analysis of the measured data is

usually achieved either by direct methods or by indirect

methods. Using direct methods, a model is assumed for the

scattering system which is then fitted to the measured data.

Alternatively, by indirect Fourier transformation (IFT), the

constraints from the data are combined with some additional

requirements to determine a real space function which

describes the scattering object. This latter approach was

introduced in SAS by Glatter (1977, 1980a,b) and Glatter &

Müller (1982), who used a smoothness constraint for the real

space function. Other methods and constraints for IFT in SAS

have been suggested (e.g. Moore, 1980; Svergun et al., 1988;

Hansen & Pedersen, 1991; Svergun, 1992; Hansen, 2000), but

apart from minor modifications the most frequently used

method is still that originally invented by Glatter.

For many problems the assumption of a dilute solution does

not hold. In some cases the structure of interest is only to be

found in non-dilute solutions. This means that experiments

have to be performed with relatively concentrated samples

and that the subsequent analysis of the measured data has to

take interparticle effects into account.

For such non-dilute systems, the generalized indirect

Fourier transformation (GIFT) extension of IFT was intro-

duced by Brunner-Popela & Glatter (1997). In GIFT, inter-

particle effects are taken into account by including a structure

factor in the calculations. The inclusion of the structure factor

leads to a nonlinear set of equations, which must be solved

either iteratively or by Monte Carlo methods.

Using GIFT the interaction between the scatterers has to be

specified by the user, who has to choose a specific structure

factor. On the one hand this requires some extra a priori

information about the scattering system, but on the other hand

the choice of a structure factor allows the estimation of rele-

vant parameters describing the interaction (e.g. the charge of

the scatterers and their interaction radius). Further input

parameters may be needed, such as the temperature and the

dielectric constant of the solvent. The estimation of para-

meters from the model may be useful (provided, of course,
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that the chosen model is correct), but correlations between the

parameters may also reduce the advantages of the approach

(Fritz et al., 2000).

In the present manuscript, an alternative method is

suggested. By expressing the function describing the (real

space) structure of the scatterer as a combination of an

intraparticle contribution and an interparticle contribution

with appropriate constraints, it is possible to separate the

contributions in real space leading to the form factor and

structure factor in reciprocal space.

Using this method it is not necessary to specify a structure

factor to be used for the indirect transformation. Only a rough

estimate of the shape of the scatterer is necessary and this

estimate may be made from the scattering profile. The

downside of this approach is that less detailed information

may be deduced from the data. However, this is also the case

for the original IFT method, which nonetheless has proved to

be a most useful supplement to direct model fitting for the

analysis of small-angle scattering data. Another limitation of

the suggested method is that for very elongated particles it

may be difficult to separate the intra- and interparticle

contributions to the scattering. In this case the more general

method of GIFT may be used.

Finally, a Bayesian framework provides principles for the

estimation of the various hyperparameters that are necessary

for IFT (e.g. the noise level, the maximum diameter of the

scatterer and the volume fraction) and which, in their own

right, may provide useful information about the scattering

system.

2. Theory

2.1. Small-angle scattering

In small-angle scattering, the intensity I is measured as a

function of the length of the scattering vector q ¼ 4� sinð�Þ=�,
where � is the wavelength of the radiation and � is half the

scattering angle. For scattering from a dilute solution of

monodisperse molecules of maximum dimension d, the

intensity can be written in terms of the distance distribution

function p(r) (see Glatter, 1982):

IðqÞ ¼ 4�nV

Zd

0

pðrÞ sinðqrÞ
qr

dr; ð1Þ

where n is the (average) number density of the particles and V

is the volume of one particle. The distance distribution func-

tion p(r) is related to the autocorrelation function �(r) for the
scatterer as pðrÞ ¼ r2�ðrÞ. For uniform scattering density of the

molecule, the distance distribution function is proportional to

the probability distribution for the distance between two

arbitrary scattering points within the molecule. For non-

uniform scattering density, the distance distribution may have

negative regions (if the scattering density of some regions of

the scatterer is less than the scattering density of the solvent).

The simple interpretation of the distance distribution

function p(r) must be modified for high concentrations in

order to take interparticle effects into account. The most

obvious effect of an increase in concentration is usually that

the calculated p(r) exhibits a negative part around the

maximum diameter of the scatterer. This is mainly caused by

the excluded volume effect and the consequent reduction in

the effective scattering length density near the scatterer. In

this case, the total distance distribution function may be

divided into three parts from the intra- and interparticle

contributions according to (Kruglov, 2005):

pðrÞ ¼ p1ðrÞ þ �pexclðrÞ þ �pstructðrÞ; ð2Þ
where � is the volume fraction (� = nV), p1(r) is the distance

distribution function of a single particle, pexcl(r) is the distance

distribution function of the excluded volume and pstruct(r) is

the remaining part of the total distance distribution function

which depends on the mutual arrangement of the scatterers

outside the excluded volume. For a monodisperse solution,

pexcl(r) is due to the perturbation of the distribution of

distances caused by the fact that the centres of two molecules

cannot come closer than the minimum dimension of the

molecules. At distances larger than twice the maximum

dimension, pexcl(r) = 0. The introduction of interparticle

effects increases the integration limit of equation (1) from the

maximum dimension d of a single molecule to that of the

maximum length of the interaction (which may, in principle, be

infinite). The first term on the right-hand side of equation (2)

determines the form factor P(q) when Fourier transformed

according to equation (1) and the last two terms determine the

structure factor S(q) as specified below. Correspondingly, the

intensity in equation (1) can be divided into a part that is due

to intraparticle effects [the form factor P(q)] and a part that is

due to the remaining interparticle effects [the structure factor

S(q)],

IðqÞ / SðqÞPðqÞ: ð3Þ
For dilute solutions, S(q) = 1 and the measured intensity is

given by the form factor P(q). Equation (3) is valid for

spherical monodisperse particles, but it is frequently assumed

to hold true also for slightly elongated particles with some

degree of polydispersity (e.g. Fritz & Glatter, 2006). Hayter &

Penfold (1981) have given the analytical solution for S(q) for a

system of particles interacting through a screened Coulomb

potential.

The structure factor can be written as

SðqÞ ¼ 1þ 4�n

Z1

0

hðrÞr2 sinðqrÞ
qr

dr; ð4Þ

where h(r) is the total correlation function (Ornstein &

Zernike, 1914), which is related to the radial distribution (or

pair correlation) function g(r) (Zernike & Prins, 1927) for the

particles by

hðrÞ ¼ gðrÞ � 1: ð5Þ
For hard spheres, g(r) = 0 for r < d, where d is the diameter of

the sphere.
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Returning to equation (2), an analytical expression for the

excluded volume of hard spheres was deduced by Kruglov

(2005). Kruglov calculated �excl(r) and the result is shown in

Fig. 1(a) for spheres of diameter d = 100 Å, together with �1(r)
and �struct(r). The corresponding distance distribution func-

tions and the total distance distribution function p(r) calcu-

lated from equation (2) are shown in Fig. 1(b) for the volume

fraction � = 0.1. From this figure, the basis of the negative

region in the total distance distribution function can be seen.

The shape of pstruct(r) is shown in more detail in Fig. 1(c).

From Fig. 1(b) it is also seen that, for spheres, p1(r) and

pstruct(r) have their support mainly in different regions of

space. This means that, if pexcl(r) is given, it may be possible to

estimate p1(r) and pstruct(r) separately from the experimental

data. It is the main purpose of the present manuscript to test

this assumption. As the form of pexcl(r) is only dependent upon

the geometry of the particle, it requires less information for an

IFT than a complete determination of the structure factor

S(q), which requires the specification of the interaction

between the particles.

2.2. Estimation of the excluded volume distribution

The correlation function �1ðrÞ ¼ p1ðrÞ=r2 for a homo-

geneous particle is proportional to the intersection volume of

the particle and its ghost, shifted a distance r. To describe

interactions between particles, a ‘cross correlation function’

�(r)cross may be introduced (Kruglov, 2005) as the intersection

volume of a particle with the ghost of a second particle. Again,

the ghost is shifted a distance r from the original position of

the second particle. The excluded volume correlation function

�excl ¼ pexclðrÞ=r2 can then be found by integration of �(r)cross
over all positions of the first particle and the ghost of the

second particle, where the two ‘real’ particles (not the ghost)

overlap. From the positions where the particles do not overlap

the cross correlation function becomes �struct ¼ pstructðrÞ=r2.
Excluded volume distributions for ellipsoids of revolution

have been estimated using an approximative method similar to

the method of Kruglov. Monte Carlo simulations of two

ellipsoids of arbitrary orientation and separation were used to

estimate the fraction of ellipsoids that overlapped as a func-

tion of their centre-to-centre separation. This was done to

distinguish between the contributions to �excl and those to

�struct (which is trivial for the case of spheres). For the calcu-

lation of the average intersection volume of two ellipsoids, the

expressions for the correlation functions of prolate and oblate

ellipsoids derived by Müller et al. (1996) were used.

Combining these correlation functions with the outcome of

the Monte Carlo simulation, an approximation to the excluded

volume correlation function may be calculated following the

lines of Kruglov (2005). Using pðrÞ ¼ r2�ðrÞ, some examples of

the corresponding excluded volume distance distribution

functions are shown in Fig. 2 for ellipsoids of revolution of

various axial ratios.

For axial ratios a between 0.1 and 10, the calculated

excluded volume distributions were parameterized and

implemented in the program IFTc, described in Appendix A,

which allows the axial ratio of pexcl(r) to be used as a free

parameter. However, owing to the approximations used for

the estimation of pexcl, and the similarities in the support for p1
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Figure 1
(a) Solid line: �1(r) for a sphere of diameter 100 Å; dotted line: the
corresponding��excl(r); dashed–dotted line: �struct(r). (b) Solid line: p1(r)
for a sphere of diameter 100 Å; dotted line: pexcl(r) for spheres of
diameter 100 Å and volume fraction � = 0.1; dashed–dotted line: pstruct(r)
for spheres of diameter 100 Å and � = 0.1; dashed line: total distance
distribution function p(r) according to equation (2). (c) pstruct(r) from (b),
rescaled for clarity.
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and pexcl for strong deviations from spherical symmetry (as

seen by comparison of Figs. 1 and 2), the program will be most

reliable for globular particles.

2.3. IFT in SAS

From equation (1) for dilute scattering, the distance distri-

bution function p(r) may be approximated by ~pp ¼ ðp1; :::; pNÞ
and the measured intensity at a given qi written as

IðqiÞ ¼
XN
j¼1

aijpj þ ei; ð6Þ

where ei is the noise at data point i and

aij ¼ 4��r sinðqirjÞ=ðqirjÞ, where �r ¼ rj � rj�1. The aim of

the indirect Fourier transformation is to restore ~pp, which

contains the full information present in the scattering profile.

The method of Glatter (1977) is an implementation of the

general method of Tikhonov & Arsenin (1977), which esti-

mates a function of interest by minimizing a new functional

written as a weighted sum of �2 and a regularization functional

K:

�K þ �2: ð7Þ
�2 is defined in the conventional manner, i.e.

�2 ¼
XM
i¼1

½ImðqiÞ � IðqiÞ�2
�2
i

; ð8Þ

where Im(qi) is the measured intensity and �i is the standard

deviation of the noise at data point i.

For the choice of the regularization functional, the expres-

sion K ¼ R
p00ðxÞ2dx is frequently used, giving preference to

smooth distance distribution functions p(r). Assuming p(0) =

p(d) = 0, this regularization expression takes the discrete form

K ¼
XN�1

j¼2

�
pj �

ðpj�1 þ pjþ1Þ
2

�2

þ 1

2
p21 þ

1

2
p2N; ð9Þ

which is similar to Glatter’s original smoothness constraint.

For regularization by the maximum entropy method (Skil-

ling, 1988), a constraint K ¼ R fpðrÞ ln½pðrÞ=mðrÞ� � pðrÞ +

mðrÞgdr is used, which takes the discrete form

K ¼
XN
j¼1

pj lnðpj=mjÞ � pj þmj; ð10Þ

where ðm1; :::;mNÞ is a prior estimate of ðp1; :::; pNÞ. Using this

method will bias the estimate towards the prior, i.e. for the

case of no constraints from the experimental data, minimizing

equation (7) will lead to ~pp ¼ ~mm.
As noted by Steenstrup & Hansen (1994) for ~pp ’ ~mm, a

second-order Taylor approximation of equation (10) will lead

to

K ’
XN
j¼1

½ðpj �mjÞ2=2mj�: ð11Þ

From this equation, it can be seen that, using the prior

mj ¼ ðpjþ1 þ pj�1Þ=2, the maximum entropy constraint corre-

sponds to the smoothness constraint of equation (9) in a new

metric defined by the denominator 2mj in equation (11). Using

this metric will combine the positivity constraint of equation

(10) with the smoothness constraint of equation (9).

For non-dilute solutions, p in equation (1) is replaced by the

sum of p1, �pexcl and �pstruct. For the regularization of p1,

equation (11) is used with mj ¼ ðpjþ1 þ pj�1Þ=2 as mentioned

above, while the conventional constraint of equation (9) is

used for pstruct. For the test examples shown here, only the

excluded volume for a sphere is used for pexcl. This implies that

the diameter of the sphere from which pexcl is calculated

should be very close to the maximum dimension d of p1, but

this may be generalized. This is done in the program IFTc,

which uses pexcl for an ellipsoid of revolution, estimating the

axial ratio a for the ellipsoid from the scattering data as

described below.

As an additional constraint, it is assumed throughout these

calculations that pstruct ’ 0 for r < 0.5d, in accordance with

Fig. 1.

Furthermore, as SðqÞ ! 1 for q ! 1, equation (3) gives

IðqÞ / SðqÞPðqÞ ! PðqÞ for q ! 1; ð12Þ
which can be written

FT½p1ðrÞ þ pexclðrÞ þ pstructðrÞ� ! FT½p1ðrÞ� for q ! 1;

ð13Þ
where FT denotes the Fourier transform of equation (1).

Consequently, it must hold that

FT½pexclðrÞ þ pstructðrÞ� ! 0 for q ! 1; ð14Þ
which may also be used in the estimation of pstruct.
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Figure 2
Solid line: pexcl(r) for a sphere of diameter 100 Å; dotted line: pexcl(r) for
an oblate ellipsoid of maximum dimension 100 Å and axial ratio 0.5;
dashed–dotted line: pexcl(r) for a prolate ellipsoid of maximum dimension
100 Å and axial ratio 2.0; dashed line: pexcl(r) for a prolate ellipsoid of
maximum dimension 100 Å and axial ratio 5.0.
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2.4. Bayesian analysis

The Lagrange multiplier � (which depends on the noise

level of the experimental data), the maximum diameter d of

the scatterer, the volume fraction � and the axial ratio a are all
hyperparameters, which can be estimated from their posterior

probability P for a set (�, d, �, a) after data have been

measured. This probability is calculated using Gaussian

approximations around the optimal estimate ~ppopt for a given

set of hyperparameters (�, d, �) and integrating over all

solutions ~pp for this particular set of hyperparameters (Gull,

1989; MacKay, 1992). Using the regularization from equation

(9), writing A ¼ rrK and B ¼ rr�2=2, the probability of a

set of hyperparameters may be written (Hansen, 2000):

Pð�; d; �; aÞ / expð��K � �2=2Þ
det1=2ðAþ ��1BÞ : ð15Þ

In equation (15), both matrices and ð��K � �2=2Þ must be

evaluated at the point ~pp where ð��K � �2=2Þ takes its

maximum value.

Using equation (15), the most likely value for each hyper-

parameter can be found from the optimum, and an error

estimate for the hyperparameters can be provided from the

width of the probability distribution (see Fig. 3). As the

Bayesian framework ascribes a probability to each calculated

solution ~pp, an error estimate for the (average) distribution of

interest is provided from the individual probabilities of all the

solutions (each solution corresponding to a specific choice of

noise level, volume fraction and maximum dimension of the

scatterer).

For a recent overview paper on Bayesian inference in

physics, see Dose (2003).

3. Results

For evaluation of the suggested method, various parameters

have been calculated in the examples given below, where the

axial ratio a of the excluded volume distribution employed has

been fixed at 1.0.

The Guinier radius Rg was calculated from the estimate of

p1 according to the formula (e.g. Glatter, 1982)

R2
g ¼

R
p1ðrÞr2 dr

2
R
p1ðrÞ dr

: ð16Þ

The volume fraction � was estimated from

� ’ � R
pexclðrÞ dr

8
R
p1ðrÞ dr

; ð17Þ

deduced from the corresponding ratio for homogeneous

spheres (where the excluded volume is 23 = 8 times that of the

sphere). Finally, the forward scattering I(0) was determined

from

Ið0Þ ¼ 4�nV

Zd

0

p1ðrÞ
sinðqrÞ
qr

dr: ð18Þ

3.1. Simulated data

For the simulated examples, M = 97 data points in the

interval q 2 ½0:01; 0:25� Å�1 were used. Gaussian noise was
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Figure 3
Posterior probabilities for hyperparameters from Fig. 4. (a) Probability
for the Lagrange multiplier �. (b) Probability for the maximum diameter
d. (c) Probability for the volume fraction �.
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added according to � ¼ RIðqÞ þ 0:01Ið0Þ, with R denoting the

relative noise level (chosen as 1 or 4%).

Approximately N = 200 points were used for the estimation

of ~pp. This was typically divided into 100 points for ~pp1 in the

interval [0;d], and about 50 points each for ~ppexcl and ~ppstruct in
the interval [0;3d]. Increasing N above this number only leads

to an increase in CPU time for the estimation. A complete

calculation may be done in a few minutes, but if necessary the

algorithm used may be optimized further.

Data from spheres of radius 50 Å, from prolate ellipsoids of

semi-axis (45,55) Å and from ellipsoids of semi-axis (40,60) Å

were simulated for various noise levels R and volume fractions

�, as shown in Table 1 and Figs. 4, 5 and 6. For all the simulated

examples, the structure factor for hard spheres from Percus &

Yevick (1958) was used. For the spheres, a structure factor

S(q) for a radius R = 50 Å was used, but for the ellipsoids, the

radii used were R = 48.1 and R = 45.8 Å, respectively, corre-

sponding to the (volume-)equivalent radius for a sphere. As

the maximum dimensions d of the ellipsoids are 110 and

120 Å, respectively, these examples should test the limitations

of the method when 2R 6¼ d.

Deviations from a monodisperse structure factor were

tested using a structure factor
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Figure 4
(a) Error bars: simulated data points from spheres of radius 50 Å, volume
fraction 0.2 and noise 1%; solid line: fit of the data; dotted line: estimated
P(q). The insert shows the intensity on a linear scale for q < 0.1 Å�1. (b)
Error bars: p1(r). The original p1(r) is not discernable from the estimate.
Dotted line: pexcl(r); dashed–dotted line: pstruct(r). (c) pstruct(r) rescaled.

Figure 5
(a) Error bars: simulated data points from ellipsoids of semi-axis
(45,45,55) Å, volume fraction 0.2 and noise 1%; solid line: fit of the data;
dotted line: estimated P(q). The insert shows the intensity on a linear
scale for q < 0.1 Å�1. (b) Solid line with error bars: p1(r); dotted line:
original p1(r); dotted line with error bars: pexcl(r); dashed–dotted line with
error bars: pstruct(r).
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Stotðq; �;R; �SÞ /
Z

exp

�ðR0 � RÞ2
�2
S

�
Sðq; �;R0Þ dR0; ð19Þ

where S(q,�,R) is the structure factor for a sphere of radius R
and volume fraction �, and �S denotes the degree of poly-

dispersity for the total structure factor Stot. Even though

equation (19) does not represent the physically correct

description of polydispersity effects, it serves the purpose of

testing the method for deviations from simple monodisperse

structure factors. Furthermore, it has been shown that equa-

tion (19) with the structure factor of hard spheres provides an

adequate approximation to the structure factors of a wide

variety of non-spherical scatterers (van der Schoot, 1992;

Weyerich et al., 1999).

3.2. Experimental data

Small-angle neutron scattering experiments using the

anionic surfactant sodium dodecyl sulfate (SDS) at a

concentration of 8.65 mg ml�1 were carried out at the Paul

Scherrer Institute in Switzerland (Arleth, 2004). The

measurements were performed using Tris buffer at pH 7 and at

three different ionic strengths from 20, 50 and 250 mM NaCl.

The experimental data are shown in Figs. 7(a), 8(a) and 9(a),

and the corresponding estimates of p1, pexcl and pstruct, using

the resolution function for the specific experimental setup

described by Pedersen et al. (1990), are shown in Figs. 7(b),

8(b) and 9(b). The structure factors calculated from the esti-

mates of p1, pexcl and pstruct are shown in Fig. 10 for all three

examples.

4. Discussion

4.1. Simulated data

From the results shown in Table 1 and Figs. 4, 5 and 6, it is

evident that the shape of pstruct may be reproduced from the

simulated data provided that a good estimate of pexcl is

used. As expected, the best results are obtained for

low volume fractions and low noise levels. Poly-

dispersities of 10 and 20% [�S/R according to equation

(19)] were included in the calculations for the spheres

shown in Table 1. The polydispersities for S(q) will

change the excluded volume distribution for the

simulated data from that of a sphere to an average

value corresponding to equation (19). The results in

Table 1 indicate that small deviations from the correct

excluded volume distribution do not lead to erroneous

estimates. As larger discrepancies are introduced for

pexcl through differences between the diameter of the

spheres used for S(q) and the diameter of p1(r), the

deviations between the calculated and correct values

for the tested parameters increase.

For ellipsoids of axial ratio 1.22, the results for the

lowest volume fraction or lowest noise level are

acceptable, but for ellipsoids of axial ratio 1.5 the
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Figure 6
(a) Error bars: simulated data points from ellipsoids of semi-axis
(40,40,60) Å, volume fraction 0.2 and noise 1%; solid line: fit of the data;
dotted line: estimated P(q). The insert shows the intensity on a linear
scale for q < 0.1 Å�1. (b) Solid line with error bars: estimated p1(r); dotted
line: original p1(r). The insert shows the estimated S(q) calculated as
FT½p1ðrÞ þ pexclðrÞ þ pstructðrÞ�=FT½p1ðrÞ� and the dotted line shows the
original S(q).

Table 1
Estimated parameters.

For spheres, the radius used for the simulation is shown in brackets and the
polydispersity used for S(q) is given in % after the brackets [according to equation (19)].
For prolate ellipsoids, the semi-axis values are shown in brackets. The estimated values
in the table are given with errors, and for the simulated data the correct values for � and
Rg are shown in brackets after the estimated values. The simulated examples all have
I(0) = 1.

Example R (%) � (%) Rg (Å) d (Å) I(0) (a.u.)

Spheres (50) 0% 1 5.0 � 0.5 (5) 38.8 � 0.1 (38.7) 96 � 1 1.00 � 0.02
Spheres (50) 0% 1 18 � 1 (20) 39.0 � 0.3 (38.7) 98 � 2 0.99 � 0.06
Spheres (50) 0% 4 17 � 2 (20) 38.5 � 0.6 (38.7) 94 � 3 0.95 � 0.09
Spheres (50) 10% 4 17 � 2 (20) 38.4 � 0.5 (38.7) 94 � 3 0.92 � 0.08
Spheres (50) 20% 4 15 � 1 (20) 38.4 � 0.4 (38.7) 94 � 2 0.89 � 0.06
Ellipsoids (45,55) 1 4.7 � 0.5 (5) 37.5 � 0.2 (37.6) 96 � 1 0.98 � 0.02
Ellipsoids (45,55) 1 17 � 1 (20) 37.4 � 0.3 (37.6) 96 � 2 0.96 � 0.04
Ellipsoids (45,55) 4 17 � 1 (20) 36.5 � 0.5 (37.6) 91 � 3 0.87 � 0.06
Ellipsoids (40,60) 1 14 � 1 (20) 33.5 � 0.4 (36.9) 93 � 2 0.69 � 0.04
Ellipsoids (40,60)† 1 16 � 1 (20) 37.6 � 0.8 (36.9) 111 � 2 0.99 � 0.08
SDS 20 mM NaCl – 2.8 � 0.8 16.5 � 0.3 50 � 3 0.88 � 0.03
SDS 50 mM NaCl – 1.8 � 0.9 16.5 � 0.4 46 � 6 0.94 � 0.04
SDS 250 mM NaCl – 1.3 � 0.4 18.2 � 0.3 51 � 3 1.20 � 0.02

† This calculation uses d � 2R = 28 Å.
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deviations between the estimated and true values are signifi-

cant. This is to be expected, as the deviation between the

diameter used for S(q) and the maximum dimension of p1 is

d� 2R ¼ 120� 2� 45:8 ’ 28 Å or 25–30%. Entering this

difference explicitly into the calculations alters the result to be

in good agreement with the simulated input, as shown in

Table 1 and Fig. 6.

The intra-distance distribution function p1 usually has a

smooth transition to zero around the maximum diameter of

the particle. For example, for a prolate ellipsoid of revolution

of semi-axis (45,55) Å, less than 1% of the total area of p1 is

found in the interval [90;110] Å and less than 0.1% in the

interval [100;110] Å. This makes a reliable estimate of d very

difficult in these cases, as truncation of the tail of p1 around d

will give a better value for the regularization constraint

without significant implications for the Fourier transformation

of p1 and the corresponding quality of the fit of the data. To

improve the estimates in such cases an additional smoothness

constraint on p1(d) should be implemented.

4.2. Experimental data

The distance distribution functions p1 in Figs. 7(b), 8(b) and

9(b) all show spherical structures with a diameter of about

5 nm. This is to be expected, as the experiments were all

carried out well above the critical micelle concentration for

SDS. The small tails around the maximum diameter may

indicate a small amount of polydispersity in the solutions,

which is also expected. The estimated volume fractions are

consistent with the initial concentrations of SDS and the

presence of water molecules in the micelles (more water

molecules are expected to be associated with SDS at low ionic

strengths). As a result of the low volume fractions, the

corresponding error estimates become relatively large. At

decreasing ionic strength a negative region in pstruct increases,

which indicates the reduced density of micelles at this distance.

The reduced density is caused by repulsion between the

charged head-groups of the SDS molecules at the surface of

the micelles. The structure factors calculated from the esti-

mates of p1, pexcl and pstruct are shown in Fig. 10.
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Figure 8
SDS in 50 mM NaCl. (a) Error bars: experimental data; solid line: fit of
data; dotted line: FT[p1(r)]. (b) Solid line with error bars: p1(r); dotted
line with error bars: pexcl(r); dashed–dotted line with error bars: pstruct(r).

Figure 7
SDS in 20 mM NaCl. (a) Error bars: experimental data; solid line: fit of
the data; dotted line: FT[p1(r)]. (b) Full line with error bars: p1(r); dotted
line with error bars: pexcl(r); dashed–dotted line with error bars: pstruct(r).
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Comparison of Figs. 6–9 indicates an additional advantage

of the free form estimation. Interpretation of data in reci-

procal space is usually more difficult than the corresponding

representation in real space, which is one of the reasons that

p(r) is usually preferred over I(q). In the approach suggested

here, S(q) is represented by the real space distributions pexcl(r)

and pstruct(r), which may allow interaction effects to be inter-

preted directly from the shape of pstruct(r).

Analysis of the simulated and experimental data shows that

it is possible to obtain simultaneous estimates of pstruct and p1
from the data when only the shape of pexcl is assumed to be

known a priori (the area or maximum value for pexcl, as well as

the overall dimension of pexcl, are determined by the data).

The program used (IFTc) for these calculations is described

in Appendix A. Excluded volume distributions for ellipsoids

of revolution of axial ratios a between 0.1 and 10 have been

implemented in the program to separate the intra- and inter-

particle effects for non-spherical particles. This allows a more

general approach, as the axial ratio for pexcl may be estimated

from the experimental data.

Finally, it should be noted that, in order to study the

limitations of the method, the volume fractions used for the

simulated examples were relatively large. For lower volume

fractions, the interparticle contributions are reduced and the

exact form of pexcl becomes less important. Therefore, the

method described here might also be used as a first-order

correction for concentration effects in small-angle scattering

as an alternative to the frequent practice of simply neglecting

those data points that are influenced by interparticle effects.

5. Conclusion

It has been demonstrated that it is possible to separate the

intra- and interparticle effects for globular particles from non-

dilute solution scattering experiments using an excluded

volume distribution instead of a complete structure factor for

the modelling of interparticle effects. The excluded volume

distribution is only dependent upon the geometry of the

particles and consequently the excluded volume distribution

requires less a priori information than the structure factor. By

the introduction of the excluded volume distribution in the

indirect transformation, the remaining two distributions to be

estimated refer to different regions of real space, which makes

their separation feasible. Therefore, interaction effects can be

estimated from the data without the use of a specific model.

The Bayesian estimation of the hyperparameters, including

the volume fraction, allows automatic computation of the

distributions of interest without any user input.

APPENDIX A
Description of the program IFTc

Algorithm. For each set of parameters (�, d, �, a) a solution

(p1, pexcl, pstruct) to equation (7) is calculated using the

successive over-relaxation algorithm described by Steenstrup

(1985). For each set of parameters the evidence given by
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Figure 9
SDS in 250 mM NaCl. (a) Error bars: experimental data; solid line: fit of
the data; dotted line: FT[p1(r)]. (b) Solid line with error bars: p1(r); dotted
line with error bars: pexcl(r); dashed–dotted line with error bars: pstruct(r).

Figure 10
Calculated structure factors S(q) for the SDS experiments shown in
Figs. 7–9. Solid line: 20 mM NaCl; dashed–dotted line: 50 mM NaCl;
dotted line: 250 mM NaCl.
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equation (15) is calculated and the parameters are optimized

(by the maximum evidence) using the Powell algorithm given

by Press et al. (1992). When the optimum has been found, a

number of solutions close to the optimum are calculated for

the estimation of errors on the estimated distributions and

parameters. With a 2.0 GHz processor and 1.0 Mbytes of

RAM the necessary CPU time is typically 10–20 s, depending

on the requirements for precision of the estimate.

Input. In addition to the data, the program requires an

initial guess or starting point for the parameters (d, �, �, a). If
the user does not provide this, the program makes an estimate.

In principle, the program may run without any other user

input than the experimental data. However, the stability of the

program is improved if sensible user inputs are provided, as is

the required CPU time.

Entering an initial value � = 0 will fix � at zero and the

program will estimate p(r) without concentration effects (as in

an ‘ordinary’ IFT).

The value of the axial ratio amay be fixed by the user of the

program. Alternatively, it may be estimated either by maxi-

mizing the evidence as a function of a, or by calculating a for

an equivalent ellipsoid found using the ratio between the third

and first moments of the single particle distance distribution

(used as a measure of the elongation of the particle).

Owing to the low information content of traditional small-

angle scattering data, as much prior information as possible

should be used for the analysis, i.e. if the axial ratio of the

molecules is known it should be entered as a constant, not a

fitting parameter.

Output. The program writes estimates of I(q), P(q), S(q)

and p1(r), pexcl(r), pstruct(r) to individual files. Furthermore, the

fitted parameters, including error estimates, are written to an

output file. Finally, a plot file, to be used with wgnuplot

(Williams & Kelley, 1999), is produced. The plot shows the

data with the fit in linear and log plots, as well as the distance

distribution functions and the structure factor.

Platform. The program has been tested under Windows XP.

Language. The source code is written in Fortran 90. The

code does not need any special PC requirements.

Documentation. In addition to the program executable file,

the distribution (in the form of a zip file) contains a .pdf file

describing the input and output in more detail, as well as the

full source code and a test example.

Availability. The distribution, including the program and

the source code, can be obtained free of charge by contacting

the author.
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